Исследуем заданную функцию
1. Область определения функции:
- множество всех действительных чисел.
2. Четность функции
Функция
называется четной, если выполняется равенство:
, а нечётной -
Итак, функция ни чётная ни нечётная.
3. Точки пересечения с осью Оу и Ох
3.1. С осью Ох (f(x)=0), тоесть
- точки пересечения с осью Ох
3.2. С осью Оу (х=0)
Если х=0, то f(x)=0
(0;0) - точки пересечения с осью Оу
4. Критические точки, возрастание и убывание функции. Локальный максимум и локальный минимум.
4.1. Найдем производную функции
Приравниваем производную функцию к нулю
____-__(0)____+____(1)___-_____
Функция возрастает на промежутке
, а убывает на промежутке -
и
. В точке
функция имеет локальный минимум, а в точке
- локальный максимум
- относительный минимум,
- относительный максимум
5. Точка перегиба.
5.1. Вторая производная функции:
Приравниваем ее к нулю
- точка перегиба
Горизонтальных, наклонных и вертикальных асимптот нет.