Докажите, что в произвольном треугольнике прямые , проходящие через вершины и делящие...

0 голосов
134 просмотров

Докажите, что в произвольном треугольнике прямые , проходящие через вершины и делящие периметр треугольника пополам, пересекаются в одной точке.


Геометрия (20 баллов)
оставил комментарий Супер Профессор (69.9k баллов)

Торема Чевы известна?

Дан 1 ответ
0 голосов
Супер Профессор (69.9k баллов)
 
Правильный ответ

Я тоже тут отмечусь, уж простите :)
Треугольник ABC, стороны (противолежащие углам) a, b, c,
Точка K делит сторону BC = a на отрезки CK = x и BK = a - x;
Точка M делит сторону AC = b на отрезки AM = y и CM = b - y;
Точка N делит сторону AB = c на отрезки BC = z и AC = c - z;
Получается из условия деления периметра пополам
b + x = c + a - x; x = (c + a - b)/2 = p - b; CK = p - b;
где p - полупериметр ABC; p  = (a + b + c)/2;
a - x = BK = p - c;
Аналогично
AM = p - c; CM = p - a;
BN = p - a; AN = p  - b;
То есть AN*BK*CM/(BN*AM*CK) = (p - b)*(p - c)*(p - a)/((p - a)*(p - c)*(p - b)) = 1;
Остается сослаться на обратную теорему Чевы.

оставил комментарий Супер Профессор (69.9k баллов)

Равенства типа AM = p - c можно и не расписывать так длинно :) просто из условия следует, что AM + c = p; CM + a = p; и так далее

оставил комментарий Супер Профессор (69.9k баллов)

есть прямая, и есть обратная. Прямая - это "если AK, BM и CN пересекаются в одной точке, то AN*BK*CM/(BN*AM*CK) = 1" а обратная - "если ... = 1; то ... пересекаются в одной точке". Доказательство у них принципиально разное. Обычно сначала как-то доказывают прямую, а потом обратную от "противного". По-моему, я тут приводил 3 варианта доказательств прямой теоремы, но тут так все организовано, что найти те задачи очень сложно

оставил комментарий Супер Профессор (69.9k баллов)

Ну, само собой, про ориентированные отрезки я не упоминаю. Есть, кстати, еще вариант ТЧ - в тригонометрической форме. Там аналогичное равенство для синусов углов, под которыми видны из точки отрезки на сторонах.

оставил комментарий Супер Профессор (69.9k баллов)

Вот если бы, "главные мозги" могли бы вести тут что-то вроде блога (или кружка, он же факультатив), причем с администрированием доступа, было бы куда полезнее. Но на этом сайте этого никогда не будет, он придуман для двоечников, а не для тех, кто хочет учиться.

оставил комментарий Супер Профессор (69.9k баллов)

Конечно, "прямая" и "обратная" - это терминология. Оба утверждения доказаны, поэтому их можно "свести в одно" и считать, что оно "работает в обе стороны". Это уже вопрос для "методиста", а не для математика.

оставил комментарий Супер Профессор (69.9k баллов)

Я хочу рассказать одну "поучительную" историю :))) На выпускном экзамене по математике у меня была теорема синусов. Я дал формулировку, как положено. Меня выгнали с экзамена, и был большой скандал (всё-таки победитель всяких олимпиад и т.д.). Вместо слова "пропорциональны", как требовалось РОНО, я сказал "отношения равны". Чуть "пару" не схлопотал...

оставил комментарий Супер Профессор (69.9k баллов)

Так вот, с тех пор я НИКОГДА не придерживаюсь "методических указаний". У меня есть (АБСОЛЮТНО ПРАВИЛЬНОЕ) убеждение, что я знаю предмет лучше любого РОНО - или как оно там сейчас называется. Вообще, слушать ДУРАКОВ вредно, а дураков с положением - особенно вредно.

оставил комментарий Супер Профессор (69.9k баллов)

Я не призывают никого демонстративно нарушать предписанные правила, как раз - наоборот. Просто дураков всегда надо видеть, понимать и ОБХОДИТЬ. По-возможности - аккуратно, ибо они агрессивны и опасны. В конце концов они все равно проиграют, потому что умные всегда выигрывают. Просто потери могут быть невосполнимые, их следует ТЩАТЕЛЬНО избегать.

оставил комментарий Супер Профессор (69.9k баллов)

В моей истории я просто обязан был ПАРАЛЛЕЛЬНО взять на заметку требования РОНО, и на экзамене дать именно требуемое определение. Это было мое упущение, но оно заключалось не в теореме синусов, а в том, что я ЗАДЕЛ ДУРАКОВ.

...