Квадрат, периметр которого 12 см. вращается вокруг одной из своих сторон. найти площадь...

0 голосов
99 просмотров

Квадрат, периметр которого 12 см. вращается вокруг одной из своих сторон. найти площадь осевого сечения, площадь полную


Геометрия (27 баллов)
оставил комментарий Начинающий (269 баллов)

допиши вопрос

Дано ответов: 2
0 голосов
Отличник (6.8k баллов)
 
Правильный ответ

А сторона квадрата
4*a=12
a=3
цилиндр
r=a=3 радиус основания
h=a=3 высота цилиндра

площадь сечение = площади прямоугольника
S=2*r*h=2*3*3=18

S1= πr²  = 9π площадь основания цилиндра
S2=2πr*h =18π площадь развёртки цилиндра

полная площадь поверхности цилиндра = сумме двух оснований+площадь развёртки цилиндра

S=2*9π+18π=36π

0 голосов
Начинающий (269 баллов)

Когда квадрат вращается вокруг стороны  получается цилиндр,с радиусом основания равный стороне квадрата.Здесь сторона квадрата равна 12:4=3
Осевое сечение цилиндра-прямоугольник,в этом случае со сторонами 6 и 3.Итак,его пл. равна 6*3=18
S(осн цилиндра)=3^2*π=9π
2*9π=18π
S(бок.поверх)=2πr*высота цил.=2*π*3*3=18π
S(полн)=18π+18π=36π

...